
The scope of agricultural water resources still has limited 
availability, necessitating the implementation of effective irrigation 
management that prioritize water conservation (Anapalli et al., 
2016; Adak et al., 2015). Evapotranspiration (ET) is an important 
component of the regional water budgeting as a function of 
interactions between the soil, vegetation and atmosphere (Allen et 
al., 1998; Liu et al., 2013). Although direct measuring techniques 
like eddy covariance, Bowen ratio, or lysimeters are available, soil 
heterogeneity and dynamic energy transfer make them difficult for 
calculating spatially resolved reference crop evapotranspiration 
(ETc) at large scales (Jiang et al., 2016), making it expensive, 
time-consuming, and inconvenient to use these methods. 
Climatic factors such as solar radiation, air and soil temperature, 
atmospheric humidity, wind speed etc. have a considerable impact 
on evaporation while crop characteristics and agricultural practices 
have a significant impact on transpiration (Rana and Katerji, 
2000). In order to overcome these constraints, machine learning 
algorithms have emerged as viable alternative for estimating 
reference evapotranspiration (ETo) and ETc. Machine learning 
models captures intricate patterns and correlations in data by 
leveraging large datasets and strong computing methods, resulting 
in more accurate ETo predictions. These models are trained using 

historical meteorological data, satellite images, and ground-based 
evapotranspiration observations. Regression analysis is a popular 
machine learning technique for estimating ET and a variety of 
regression methods including decision tree, random forest, support 
vector machine and linear regression are employed. 

Tree-based machine learning algorithms have been shown 
as effective in calculating groundwater levels, solar radiation, soil 
moisture and evaporation (Hassan et al., 2017; Bhattacharya, 
et al., 2018). These methods not only excel at detecting patterns 
and trends, but they are also computationally efficient, especially 
for reasonably big datasets. Tree-based methods, when compared 
to other machine learning techniques, provide a simple yet robust 
solution for solving complicated environmental modelling issues. 
Artificial neural networks (ANNs) are another method for estimating 
evapotranspiration adept at capturing non-linear relationships and 
complex patterns, making them suitable for modeling the intricate 
nature of evapotranspiration. Machine Learning models find 
applications in various fields, including yield prediction (Gupta 
et al., 2022; Saravanan and Bhagavathiappan, 2022). Setiya et al., 
(2022) used five distinct approaches—SMLR, LASSO, ELNET, 
Ridge regression, and ANN to explore the correlation between yield 
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Precise estimation of evapotranspiration is crucial for optimizing crop water uses particularly in the context of agriculture and horticultural 
production. In this study, various machine learning techniques was used to determine reference evapotranspiration by leveraging historical 
weather data. The models tested include artificial neural networks (ANN), Lasso, Ridge, Random Forest, LGBM regressor, and Gradient boosting 
regressor. LGBM regressor emerged as the top-performing model, exhibiting exceptional accuracy with a testing R-squared of 1.0. ANN also 
demonstrated notable performance, achieving a testing R-squared of 0.99. Moreover, the Random Forest and Gradient boosting regressor models 
showcased strong predictive capabilities, with R2 values of 0.99 and 0.98, respectively. These models offer valuable alternatives for estimating 
evapotranspiration, providing robustness and adaptability to diverse environmental datasets.
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and weather parameters and Patel et al., (2023) integrated remote 
sensing variables with machine learning techniques to predict crop 
yield. In the present study the various models viz. Artificial neural 
networks (ANN), Lasso, Ridge, Random forest, LGBM regressor, 
and Gradient boosting regressor and been used to estimate the 
reference evapotranspiration at Pantnagar, Uttarakhand.

MATERIAL AND METHODS

The daily records for various meteorological variables for 
the period 1996 to 2017 were obtained from the Agrometeorological 
observatory, Department of Agrometeorology, Govind Ballabh Pant 
University of Agriculture & Technology, Pantnagar located at 290N 
latitude and 79.300E longitude. The meteorological variables include 
evaporation, sunshine hours (which were converted into radiation 
using the Angstrom’s equation), total rainfall, wind direction, wind 
speed, vapor pressure, relative humidity, dry bulb temperature, air 
temperature etc. The dataset provides comprehensive information 
about the climatic conditions and environmental factors that 
influence wheat growth in the specified location over the 9-year 
period comprising 860 days in total. To facilitate the development 
and testing of the model, the entire dataset underwent partitioning 
into training and testing sets. Specifically, the data was allocated 
into 80% for training and 20% for testing purposes. Additionally, 
radiation derived from sunshine hours provides insights into the 
availability of solar energy, which is vital for photosynthesis and 
crop development. There were missing values (null values) in the 
dataset comprising Evaporation and climatic variables. To address 
this issue, the dataset was interpolated using various interpolation 
methods to fill up the missing values. The following methods were 
employed for interpolation: linear, nearest, zero, slinear, quadratic, 
and cubic. 

Interpolation methods

The interpolation process aimed to provide a completer and 
more accurate dataset for further analysis and modelling, ensuring 
that the missing numbers have no adverse effect on the results and 
insights obtained from the data. The dataset can be efficiently used for 
investigating the relationship between reference evapotranspiration 
and meteorological variables by utilizing multiple interpolation 
approaches after selecting the best-performing method, promoting 
valuable agricultural research and climate studies.

The process involved estimating the missing values in the 
dataset using each interpolation method. The linear interpolation 
method computes new data points within the range of existing 
data points by connecting them with straight lines. The nearest 
interpolation method uses the value of the nearest data point to fill 
the missing value. The zero method sets all the missing values to 
zero. The slinear, quadratic, and cubic methods use piecewise linear, 
quadratic, and cubic polynomials, respectively, to estimate missing 
values. After applying each interpolation method, the accuracy of 
the interpolated data was evaluated by calculating the root mean 
square error between the interpolated as well as the original dataset 
with the missing values filled using linear interpolation. Finally, the 
interpolation method with the lowest RMSE was selected as the best 
method for filling the missing values in the dataset.

Estimating reference evapotranspiration (ETo) 

The Penman-Monteith equation was used for calculating 
ETo (Allen et al., 1998)

Where: 

ETo is the reference evaporation (mm/day).

Δ is the slope of vapour pressure curve (kPa/0C).

Rn is the net radiation at the crop surface (MJ/m2/day).

G is the soil heat flux density (MJ/m2/day).

γ is the psychrometric constant (kPa/0C).

T is the mean daily air temperature at 2m height (0C).

u2 is the wind speed at 2 meters height (m/s).

es is the saturation vapour pressure (kPa).

Ea is the actual vapour pressure (kPa).

While determining ETo, different weather parameter such as air 
temperature, humidity, wind speed and sunshine hours are taken 
into account. 

Artificial neural network (ANN)

The Keras library was used to develop the ANN. The 
network architecture consists of four dense layers: the first two 
hidden layers have 50 neurons each, the third layer has 100 neurons 
and the output layer contains a single neuron for linear regression. 
Rectified linear unit (ReLU) activation function is employed in all 
hidden layers, however the output layer employs a linear activation 
function. The model is compiled using the Adam optimizer, a widely 
used mean squared error and the stochastic optimization algorithm 
loss function to quantify the difference between actual and predicted 
values. The training process iterates over the dataset for 100 epochs 
and mini batch gradient descent is performed having a batch size of 
50. After that, the model is trained using the provided training data. 
Additionally, ANN model evaluates the model’s performance on the 
training and test data by making predictions for both datasets.

Ridge regression 

Ridge regression model was developed using pre-
processing steps and implements with hyperparameter tuning (Table 
1), and evaluation of model performance using different metrics. 
Hyperparameter tuning was done through iterates a list of alpha 
values for Ridge regression regularization. For each alpha value, 
a Ridge regressor is trained training data and evaluated on the 
validation data. The best model with the lowermost mean squared 
error (MSE) on the validation data is selected. The cross-validation 
results for Ridge regression outperform the non-cross-validation 
results, indicating that the model’s performance is more reliable and 
generalizes better to unseen data. It provides a more robust estimate 
of the model’s performance, leading to higher metric scores, such 
as lower MSE, improved R-squared and enhanced overall model 
stability.

Machine learning methods for estimating reference evapotranspiration
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Lasso regression

Lasso regression model was developed using hyperparameter 
tuning (Table 1). It fits the Lasso regressor to different training 
subsets and predicts target values on the respective validation 
subsets. The cross-validated predictions are obtained, allowing a 
more robust assessment of the model’s generalization performance. 
It defines a hyperparameter grid with alpha values to be explored. It 
performs an exhaustive search, training a Lasso regressor for each 
combination of hyperparameters. It chooses the best model based on 
the model with the lowest MSE and obtains the optimal alpha found 
during the search.

Random forest 

Comprehensive approach was used to develop Random 
forest regressor, including hyperparameter tuning (Table 1), and 
model evaluation. The final model is then constructed using 
Random forest regressor. It defines a set of hyperparameters and 
their potential values to explore. These hyperparameters include the 
total number of estimators (trees) in a forest, the number of features 
to consider at each division, the maximum depth of the trees. The 
minimum number of samples required for splitting a node, minimum 
number of samples required at each leaf node, whether bootstrap 
samples are used for training. Based on the MSE, it selects the best 
possible model and returns best hyperparameters found during the 
search. 

LightGBM (LGBM) model 

LightGBM is a gradient boosting framework that 
performs classification and regression tasks using a tree-based 
learning approach. LightGBM uses a histogram-based approach 
to bin continuous features, which helps to reduce memory usage 

and speed up training. LGBM regressor model is created with 
default hyperparameters. It searches for the best combination 
of hyperparameters from the specified distributions. The 
hyperparameters to tune learning rate, number of estimators (trees), 
highest depth of trees, minimum number of samples necessary to 
create a leaf node, fraction of features to evaluate with each split, 
fraction of the input data used for training each of the trees, plus L1 
regularization term. The algorithm performs 50 iterations to explore 
different hyperparameter combinations. The best LGBM regressor 
model with optimal hyperparameters is obtained. The best model is 
then used to make predictions on the test set.

Gradient boosting regressor (GBR) 

A comprehensive process of GBR model development, 
was done using hyperparameter tuning (Table 1). Model defines 
a hyperparameter grid with different learning rates, numbers 
of estimators, random state values, and maximum depths to be 
explored. The GBR model is created using Gradient boosting 
regressor as the regressor.

RESULT AND DISCUSSION

Machine learning approaches provide accurate and reliable 
predictions of reference evapotranspiration. Comparison of various 
machine learning models’ performance metrics on predicting ETo 
has been depicted in Table 2. It compares various regression models 
based on their accuracy, R-squared values, and prediction errors 
(root mean square error (RMSE), MSE, mean biased error (MBE)) 
on both the training and testing datasets. The best-performing model 
would have higher R-squared values, lower RMSE and MSE, and an 
MBE close to zero, indicating an appropriate balance between fitting 
the training data and generalizing to previously unknown data.

Table 1: Regularization parameter for Model Development

Parameter ANN Ridge regression Lasso regression Random forest Light GBM Gradient boosting 
regressor

Cross Validation (Kfold=5)      
Randomized SearchCV      
L1 Regularization  
L2 Regularization 

Table 2: Evaluation matrix of ANN, Lasso, Ridge, Random Forest, LGBM regressor and Gradient boosting regressor

Model ANN Lasso Ridge Random Forest LGBM regressor Gradient boosting 
regressor

Training R2 0.998 0.991 0.991 0.995 1.000 1.000

Training R2_adj 0.998 0.991 0.991 0.995 1.000 1.000

Training RMSE 0.048 0.098 0.098 0.068 0.008 0.004

Training MSE 0.002 0.010 0.010 0.005 0.006 1.86E-05

Training MBE 0.003 5.51e-16 -2.0e-16 -0.0011 -4.56e-09 -4.82e-17

Testing R2 0.997 0.990 0.990 0.983 0.990 0.991

Testing R2_adj 0.997 0.989 0.989 0.982 0.097 0.990

Testing RMSE 0.060 0.104 0.104 0.133 0.074 0.097

Testing MSE 0.004 0.011 0.011 0.018 0.000 0.009

Testing MBE 0.048 -0.002 -0.002 -0.006 0.004 0.003
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Both the training and testing sets demonstrate the 
exceptional performance of LGBM regressor. Based on the training 
data, it achieves a perfect R-squared value of 1.00, indicating that it 
is perfectly suited to the data. The high coefficient of determination 
(R2 = 0.99) indicating that it captures 99% of the variance in the 
testing data (Fig. 1). The low RMSE and MSE values indicate 
that its predictions are very close to the actual values in the testing 
set. LGBM regressor has an MBE of approximately 0 on both the 
training and testing datasets, implying that the model’s predictions 
are, on average, very close to the true values. This also suggests that 
the model does not have a significant bias in its predictions.

The GBR and ANN also performs exceptionally well in 
terms of training accuracy, with very high R-squared values (1.00 
and 0.998), indicating an excellent fit to the training data (Fig. 2). 

The model also demonstrates good generalization capabilities, as 
evident from the relatively high R-squared value on the testing data. 
The RMSE and MSE values on both training and testing datasets 
are quite low, indicating accurate predictions. The MBE is also 
close to zero, showing minimal prediction bias. The Random Forest 
Regressor also exhibits strong performance with high R-squared 
values on both training and testing data, indicating a good fit and 
generalization. The RMSE and MSE on both training and testing 
datasets are relatively low, suggesting accurate predictions (Fig. 3). 
Overall, LGBM regressor, GBR and ANN are strong performing 
models, with the LGBM regressor slightly outperforming them 
in terms of R-squared, RMSE, and MSE. Also, the ANN’s strong 
performance, characterized by high accuracy, low bias, and excellent 
generalization capabilities, positions it as a compelling and reliable 
model for the given task

Fig 1: Reference ET calculated by Penman monteith equation and LGBM regressor

Fig 2: Residual plot and distribution of training and testing of LGBM regressor

Machine learning methods for estimating reference evapotranspiration
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 Feature importance values that are non-negative 
indicate the positive contribution of each feature to the predictive 
performance of a model (Fig.4).  Feature importance values are non-
negative and represent the weightage of each feature towards the 
evaporation loss. Higher positive values generally indicate that the 
feature is more important in predicting the evaporation loss, and 
lower values imply lower importance. Feature importance suggests 
that radiation, sunshine hours, vapour pressure, Tmin and wind 
speed are the most important feature. More radiation, and higher 
duration of sunshine hours, lead to higher temperatures and it leads 

to further increased in evaporation rates. It suggests that higher wind 
speeds have a significant impact on increasing evaporation loss.

The results show that machine learning algorithms 
can outperform traditional approaches for estimating ET. The 
results indicated that LGBM regressor provides the highest 
testing R-squared value among the tested models highlighting its 
potential for accurate wheat evapotranspiration estimation. Similar  
results have been reported by Jatav et al. (2023) and  Gao et al. 
(2020).

Fig 3: Penman Monteith evapotranspiration (ETo) vs. LGBM prediction

 
Fig 4: Feature importance as predicted by LGBM
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CONCLUSION

The study has demonstrated that machine learning 
technoques, including the LGBM regressor, GBR and ANN, have a 
significant potential for estimating ETo with high precision. LGBM 
regressor emerged as the top-performing model in this study, 
achieving a testing R2 value of 1.0, indicating a near-perfect fit to 
the data. These models not only fit the training data well but also 
demonstrated strong generalization capabilities, as evidenced by 
low RMSE and MSE values on both training and testing datasets. 
Additionally, the low MBE values indicate minimal prediction 
bias. The feature importance analysis revealed that higher levels of 
solar radiation and wind velocity contributed to increase evaporation 
rates. 
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