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As the most important food crop across the world,
with continuous increase in world population and steady
declining farmlands, wheat has been attracting academic
attention for improving its yield or potential in the future
particularly under global warming. Recent studies to
determine the wheat yield and its potential through
modelling have provided a number of important incites e.g.
The accuracy and efficiency of optimization algorithms was
done by comparing the POWELL and SCE-UA method to
predict the regional winter wheat yield, the comparison
shows that POWELL algorithm performs better than SCE-
UA due to the high assimilation accuracy and much higher
running efficiency (Tian et al., 2013). The CERES-Wheat
model which was used for estimating the regional production
of wheat in Bihar of India, revealed the percentage deviation
of +/- 4.0% of forecasted yield from the actual (Singh et al.,
2017). The impact of climate change on wheat yield in
Myandoab of Iran was simulated by using SWAP, which
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ABSTRACT

As the most important food crop across the world, with continuous increase in world population
and steady declining farmlands, wheat has been attracting academic attention for improving its yield or
potential in the future particularly under global warming. Therefore, analyzing the yield or potential of
wheat at global level relevant to greenhouse gas effect is of great significance to direct future production
of wheat in the world. However up to now, there are relatively few reports on potential yield of world wheat
projected using ‘time series’ approach like ARIMA (Auto-regressive Integrated Moving Average) model.
Thus in this paper, the crop potential yield of world wheat during 2019 to 2028 is projected using ARIMA
model based on the yields from 1961 to 2018. Our results show that during 2019 to 2028, the average
yields of world wheat are projected to increase from 3569 to 4257 kg ha-1 while top yields of world wheat
from 9852 to 11246 kg ha-1. Annual global mean temperatures are projected to increase from 15.05 to
15.31°C. Global warming exerts positive effect on average yield of world wheat while negative effect on
the top yield in 1961 to 2018 and 2028. Our study concluded that for world wheat production in 2019 to
2028, the opportunities for improving production should be mainly dependent on the advantage of high-
yield countries as the yield is still in low place before the turn-point of S-shaped curve in long-term trend
affected partly by greenhouse gas effect.
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showed that negative impact of temperature increase has
dominated the positive impact of CO

2
 concentration, hence

decline in yield (Azad et al., 2018). A linear mixed-effect
model was presented to predict wheat yield in the northern
grain-growing region of Australia, demonstrating moderate
predictive accuracy at a field scale, with an average root
mean square error (RMSE) of 0.79 Mg ha (Lai et al., 2018).
The DSSAT model, integrated with calibrated Hargreaves
ET model and dynamic crop coefficient, was run with the
generated weather data to predict the potential yield and
crop water requirement of winter wheat in the Huang-Huai-
Hai Plain in China; the models suggested that the spatial
distribution of potential yield in the future was characterized
by an increasing trend from the northwest inland to the
southeast coast (Tang et al.,  2018). The APSIM model was
parameterised for local soils and climate, furthermore
calibrated for rice and wheat growth, phenology and yields
in Pakistan by using experimental data sets; the study
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showed that farmers have currently achieved only 48% -
56% potential of wheat in Narowal and Gujranwala,
respectively (Khaliq et al.,  2019). An improved Carnegie-
Ames-Stanford approach (CASA) model was coupled with
time-series satellite remote sensing images to estimate winter
wheat yield in China, which presented that the estimated
yield of winter wheat based on remote sensing images is
consistent with the ground-measured yield, with R2 of 0.56,
RMSE of 1.22 t ha-1, and an average relative error of -6.01%
(Wang et al., 2019). The impacts of climate change on wheat
yield in the Huang-Huai-Hai Plain of China by 2099 was
simulated by using DSSAT-CERES-Wheat model, which
demonstrated that the effects of increasing thermal resources
were counteracted by the aggravated water deficits caused
by the increase in temperature (Qu et al., 2019). Possible
impacts of three climate variables on spring wheat yield in
North Dakota of USA was assessed by building a regression
model, which showed that the percentage deviation of error
for the model is approximately +/- 30% in most of the years
(Mistry and Bora, 2019). The impact of weather factors on
the achieved wheat yields was analyzed by using a set of
panel data on selected Serbian municipalities in 2000 to
2013, which displayed that the growth of water deficit by
0.1 mm in the period November 15 to April 1 resulted in 175
kg ha-1 lower yields while in the period April 1 to May 15 did
in 45 kg ha-1 lower yields (Jelocnik et al., 2019). The derived
phenological metrics for vegetation indices (VIs) and surface
reflectance’s (SRs), namely peak, area under curve (AUC),
and fitting coefficients from a quadratic function, were used
for building empirical regression winter wheat models at a
regional scale in Ukraine for three years (2016-2018),
yielding a RMSE of 0.201 t ha-1 (5.4%) and coefficient of
determination R2 of 0.73 on cross-validation (Skakun et al.,
2019). Feng et al. (2019) developed a hybrid model by
incorporating the APSIM model outputs and growth stage-
specific ECEs indicators (i.e. frost, drought and heat stress)
into the Random Forest (RF) model using multiple linear
regression (MLR) model as a benchmark, and suggested that
the APSIM + RF hybrid model could explain 81% of the
observed yield variations in the New South Wales wheat belt
of south-eastern Australia. The APSIM + RF hybrid model
had a 33% improvement in modelling accuracy compared to
the APSIM model alone and 19% improvement compared to
the APSIM + MLR hybrid model. Zhang et al. (2019)
investigated the applicability of the Simple Algorithm for
Yield Estimate (SAFY) model for estimating winter wheat dry
shoot biomass and grain yield in Guanzhong Plain of China,
using two growing seasons field data from different irrigation
scenarios, and pointed out that the leaf area index (LAI)
could be reasonably well simulated, with a minimum RMSE

of 0.11. DSSAT (decision support system for agro-technology
transfer) was validated for predicting growth and yield of
wheat in Iran under a diverse semi-arid climate (2 years with
diverse climates) and different irrigation strategies, planting
methods, and nitrogen rates, which indicated that water
stress and inappropriate weather especially during the stem
elongation influences the grain yield remarkably without
noticeable effect on straw yield (Mehrabi et al., 2019). A
field study was conducted to estimate the regional wheat
yield in Pakistan by integrating remotely sensed soil moisture
index into CERES-Wheat model, reaching a good agreement
between observed and simulated values of grain yield (RMSE
= 284.8 kg ha-1), which showed estimated mean yield of
2979 kg ha-1 being 5.2% higher than the yield reported by
Crop Reporting Service in Punjab (Fahad et al., 2019). A
light use efficiency model (EC-LUE) was used for estimating
winter wheat yield in Kansas of USA with 30-m spatial
resolution Landsat data, which indicated that the EC-LUE
model combined with wheat variety data can effectively
capture the spatial variations of winter wheat yields, and
specifically proposed method significantly improves model
simulation performance for the inter-annual variation of
yields during 2008-2017 and explains 82% of the inter-
annual yield variation (Dong et al., 2020); and so on.

As discussed above, there are rich research reports on

the crop yield or potential of wheat being modeled and

partly related to climatic factor, but most are based on the

theory of production function for wheat yield, of specific

variety, from static biological dimension and at local or

regional level, while few are based on (stationary) stochastic

process for generic wheat from dynamic evolutionary

dimension and at global level. Thus in this paper, we use

‘time series’ approach ARIMA (Auto-regressive Integrated

Moving Average) model based on stationary stochastic

process integrating global warming effect to estimate yield

or potential of world wheat in the future basing the projections

on historic performance, and aim to provide information on

directing the production of wheat in the world facing global

food insecurity deteriorated by the contradiction between

the increase of human demand and the decrease of arable

land.

MATERIALS AND METHODS

Datasets

Annual global mean temperature (°C), historic or

statistical data of average and top yields (at national level)

of world wheat from 1961 to 2018 is used for projecting and

analyzing their futures under global warming.

As shown in Table 1, from 1961 to 2018: average
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yields of world wheat rose more steadily than the top yields,

annual global mean temperature increased in a slight

fluctuation. ‘Average yield’ means average yield of world

wheat worldwide while ‘top yield’ indicates top yield of

specific country whose yield of wheat countrywide topped

in the world in given year. For example, Danish yield of wheat

countrywide topped in the world in 1961, so did New

Zealand one in 2018, and so on.

ARIMA modelling

ARIMA model is a valuable approach used for
projecting the futures of ‘time series’ variable, in which it is
assumed that if a stochastic process has some numbers of
unit root it can be converted to a stationary process of auto-
regressive moving average after same times of differencing
required for producing the stationarity of series. A simplified
representation of the model is ARIMA (p,d,q), where p is the

Table 1: Global mean temperature (°C), average and top yields of world wheat (kg ha -1) from 1961 to 2018

Year Global Average Top Country of Year Global Average Top Country of

temp.  yield yield top yield temp. yield  yield top yield

1961 14.00 1089 4121 Denmark 1990 14.39 2563 8531 Ireland

1962 13.82 1206 4548 Netherlands 1991 14.24 2444 7865 Ireland

1963 13.93 1132 4196 Netherlands 1992 13.98 2540 8015 Netherlands

1964 13.52 1241 4706 Netherlands 1993 14.11 2544 8771 Netherlands

1965 13.55 1215 4457 Denmark 1994 14.26 2448 8067 Netherlands

1966 13.98 1408 4275 Denmark 1995 14.61 2515 8619 Netherlands

1967 13.65 1339 4791 Netherlands 1996 14.12 2577 8997 Ireland

1968 13.67 1453 4814 Denmark 1997 14.46 2702 7934 Belgium

1969 13.66 1417 4395 Ireland 1998 14.79 2706 8252 Luxembourg

1970 13.92 1494 4546 Netherlands 1999 14.59 2751 8767 Ireland

1971 13.67 1625 4969 Netherlands 2000 14.52 2722 9454 Ireland

1972 13.57 1605 4570 France 2001 14.61 2742 9060 Ireland

1973 14.02 1684 5255 Netherlands 2002 14.78 2755 8444 Ireland

1974 13.57 1616 5733 Netherlands 2003 14.61 2652 8744 Netherlands

1975 13.85 1570 5102 Denmark 2004 14.70 2943 9924 Ireland

1976 13.44 1791 5437 Netherlands 2005 14.81 2829 8593 Netherlands

1977 14.02 1672 5230 Netherlands 2006 14.72 2891 9154 Ireland

1978 13.77 1933 6567 Netherlands 2007 14.93 2815 8497 New Zealand

1979 13.98 1852 5938 Netherlands 2008 14.66 3062 9939 Zambia

1980 14.08 1855 6202 Netherlands 2009 14.69 3037 9465 Belgium

1981 14.23 1880 6701 Netherlands 2010 14.92 2971 8909 Netherlands

1982 13.86 1999 7390 Netherlands 2011 14.64 3164 9864 Ireland

1983 14.25 2126 7037 Netherlands 2012 14.78 3089 8925 New Zealand

1984 13.90 2220 7885 Netherlands 2013 14.72 3250 9105 New Zealand

1985 13.73 2172 6645 Netherlands 2014 14.80 3315 10014 Ireland

1986 14.01 2321 7998 Netherlands 2015 15.10 3317 10668 Ireland

1987 14.17 2290 7065 Ireland 2016 15.34 3405 9539 Ireland

1988 14.31 2293 7765 Ireland 2017 15.14 3541 10172 Ireland

1989 14.16 2373 7598 Netherlands 2018 14.96 3425 8960 New Zealand

Source: https://www.ncdc.noaa.gov/temp-and-precip/; http://www.fao.org/faostat/en/#data.
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number of auto regression parameters, d is the order of
differencing required to produce stationarity, and q is the
number of moving average parameters (Jensen, 1990). Both
autoregressive and moving average models requires
stationary data: mean and variance of the time series are
constant over time. The constant mean assumption implies
no cycles or trends in the data, and the constant variance
assumption is similar to the homogeneity-of-variance
assumption of linear regression. The order of differencing
refers to the number of times each previous observation is
subtracted from each successive observation until no
systematic decrease or increase in the level of the series
remains as it drifts. The noise in a time series drifts up and
down across time. A complete representation of ARIMA
model is mathematically written as formula (1):
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In formula (1), besides p, d and q above explained, t

refers to the time unit while L to the lag operator, )(L to

stationary auto-regression operator, )(L to reversible

moving average operator, and zd   to target variable.

The autoregressive model represents a process in
which the observation at time t is a function of the previous
observation t-1, while a Moving Average model represents
a process in which an observation is a function of the
previous random shock.

It is assumed that historic yields of world wheat be a
‘time series’ variable as it generally rises over time due to
continuous improvement of inputs to its production through
scientific and technical means. In other words, the rise of
world wheat yield in a long run is of a stochastic process that
hints some inevitable trend behind a large number of casual
events. That is to say, potential yield of world wheat can be
estimated (even only) by ‘time series’ approach instead of
any model based on production function due to its too
complicated influential factors. So ARIMA model can be
used for projecting the yields of world wheat in 2019 to
2028 based on the yields from 1961 to 2018 in principle
limiting the number of samples projected less than 15% of
total samples. The more the samples are projected, the less
reliable the projection will be; the wider the coverage is, the
more accurate the projection will be. In application, the

Table 2: The equations of five basic models for fitting average yields of world wheat from 2009 to 2018

Model Equation

ARMA (1,2)

ARMA (1,1)

AR (1)

MA (2)

MA (1)

Note: in the equations, ‘ave’ stands for ‘average yield of world wheat’.

 
2121 483982.0469445.0ln923686.0ln076314.0019623.0ln   tttttt aveaveave 

 
121 042043.0ln598540.0ln401460.0019579.0ln   ttttt aveaveave 

 
tttt aveaveave   21 ln621597.0ln378403.0019566.0ln

 
21 202810.0683780.0019912.0ln   ttttave 

 
1562984.0019767.0ln  tttave 

Table 3: The error between fitted values and actual average yields of world wheat from 2009 to 2018 (%)

Year ARMA (1,2) ARMA (1,1) AR (1) MA (2) MA (1)

2009 -3.97 -3.35 -3.48 -5.23 -5.56

2010 +0.26 +0.73 +0.59 -1.19 -1.56

2011 -4.15 -3.55 -3.68 -5.35 -5.70

2012 +0.26 +0.74 +0.61 -1.10 -1.49

2013 -2.93 -2.35 -2.50 -4.10 -4.50

2014 -2.84 -2.36 -2.51 -4.08 -4.50

2015 -1.10 -0.49 -0.65 -2.24 -2.66

2016 -1.62 -1.15 -1.29 -2.82 -3.26

2017 -3.61 -3.08 -3.22 -4.69 -5.14

2018 +1.69 +2.19 +2.04 +0.53 +0.03

Mean -1.80 -1.27 -1.41 -3.03 -3.43

Note: the error = 100%*(fitted value-actual average yield)/actual average yield.
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projection of world wheat yields is undertaken following
these steps: firstly, to produce logarithmic values of world
wheat yields from 1961 to 2018 to eliminate
heteroscedasticity, to test the stationarity of ‘time series’
and establish ‘stationary series’ through differencing if not
stationary; secondly, to establish such five basic models as
ARMA(1,2), ARMA(1,1), AR(1), MA(2) and MA(1) to fit
world wheat yields from 2008 to 2017 in principle equating
the number of fitted samples to that of projection, and
compare fitted values with actual yields to evaluate the
fitness; finally, to validate and select optimum basic model
used for ARIMA (p,d,q) modelling to project world wheat
yields in 2019 to 2028.

RESULTS AND DISCUSSION

To Project average yields of world wheat in 2019 to 2028

Average yields of world wheat in 2019 to 2028 is

projected using ARIMA model based on the yields from 1961

to 2018.

Through testing it is shown that logarithmic series of

average yields of world wheat from 1961 to 2018 is not

stationary (t-statistic value is -1.837562 but ADF unit root

test critical value at 1% level is -4.130526) while it becomes

stationary after being once differenced (t-statistic value is

-15.54040 and ADF unit root test critical value at 1% level

is -3.552666). Thus, five basic models used for fitting

average yields of world wheat from 2009 to 2018 are

established on the basis of once differenced series of the

yields’ logarithmic values. Their equations and fitness are

shown in Table 2 and Table 3, respectively.

As shown in Table 3, ARMA(1,1) basic model is used

for ARIMA (1,1,1) modelling to project average yields of

world wheat in 2019 to 2028 because its fitness with mean

error (ME) of -1.80% is the best among five kinds.

ARIMA modelling to project average yields of world wheat

in 2019 to 2028

The regression result of ARIMA (1,1,1) model is
shown in Table 4. Absolute values of both inverted AR root
(-0.60) and inverted MA root (0.04) are all below 1.00, which
shows the ARIMA (1,1,1) model is stationary. Therefore,

Table 4: The regression result of ARIMA (1,1,1) model for average yields of world wheat in 2019 to 2028

Variable Coefficient Std. Error t-Statistic Probability  

C 0.019579 0.003306 5.923148 0.0000

AR(1) -0.598540 0.164890 -3.629926 0.0006

MA(1) -0.042043 0.211417 -0.198864 0.8431

R-squared 0.396882 Mean dependent var 0.018639

Adjusted R-squared 0.374122 S.D. dependent var 0.052112

S.E. of regression 0.041227 Akaike info criterion -3.487375

Sum squared resid 0.090081 Schwarz criterion -3.378874

Log likelihood 100.6465 Hannan-Quinn criter. -3.445310

F-statistic 17.43830 Durbin-Watson stat 1.961834

Prob(F-statistic) 0.000002

Inverted AR Roots -0.60

Inverted MA Roots 0.04

Table 5: The equations of five basic models for fitting top yields of world wheat from 2009 to 2018

Model Equation

ARMA (1,2)

ARMA (1,1)

AR (1)

MA (2)

MA (1)

Note: in the equations, ‘top’ stands for ‘top yield of world wheat’.

 
2121 913188.0775870.1ln801354.0ln801354.1017079.0ln   tttttt toptoptop 

 
121 540504.0ln309749.0ln690251.0014675.0ln   ttttt toptoptop 

 
tttt toptoptop   21 ln588727.0ln411273.0014105.0ln

 
21 338629.0967721.0014427.0ln   tttttop 

 
1671608.0014740.0ln  ttttop 
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average yields of world wheat in 2019, 2020, 2021, 2022,
2023, 2024, 2025, 2026, 2027 and 2028, are projected
using the ARIMA(1,1,1) model and resulted with 3569,
3640, 3712, 3785, 3860, 3936, 4014, 4094, 4175 and 4257
kg ha-1, respectively.

To project top yields of world wheat in 2019 to 2028

Though wheat in different countries has its own
climatic condition differing from the others, but those that
enjoyed top yields of world wheat in some given years,
represent various casual events behind which an inevitable
law limits average yield meeting the top. In this case, the
variation of top yields of world wheat in long term is deemed
as stochastic process. This study does not aim to reveal the
effect of climatic factors on the growth of wheat in any
specific country owning top yield in the world, but to
explore general trend of top yields of wheat on global scale.

Thus similarly, top yields of world wheat in 2019 to 2028 can
be projected using ARIMA model based on the yields from
1961 to 2018.

To establish and test basic models used for fitting top yields
of world wheat from 2009 to 2018

Through testing it is shown that logarithmic series of
top yields of world wheat from 1961 to 2018 is not stationary
(t-statistic value is -0.465786 but ADF unit root test critical
value at 1% level is -4.140858) while it becomes stationary
after being once differenced (t-statistic value is -14.06732
and ADF unit root test critical value at 1% level is -3.555023).
Thus, five basic models used for fitting top yields of world
wheat from 2009 to 2018 are established on the basis of
once differenced series of the yields’ logarithmic values,
whose equations and fitness are respectively shown in Table
5 and Table 6.

Table 6: The error between fitted values and actual top yields of world wheat from 2009 to 2018 (%)

Year ARMA (1,2) ARMA (1,1) AR (1) MA (2) MA (1)

2009 -12.01 -10.20 -12.15 -8.00 -6.63

2010 -4.91 -3.18 -5.35 -0.84 +0.67

2011 -12.63 -11.26 -13.29 -9.14 -7.73

2012 -1.78 -0.47 -2.81 +1.89 +3.50

2013 -2.07 -1.00 -3.37 +1.31 +2.95

2014 -9.42 -8.66 -10.89 -6.54 -5.00

2015 -13.51 -12.99 -15.17 -10.99 -9.49

2016 -1.60 -1.25 -3.78 +0.99 +2.72

2017 -6.14 -6.03 -8.49 -3.92 -2.25

2018 +8.39 +8.26 +5.37 +10.66 +12.62

Mean -5.57 -4.68 -6.99 -2.46 -0.86

Note: the error = 100%*(fitted value-actual top yield)/actual top yield.

Table 7: The regression result of ARIMA (0,1,1) model for top yields of world wheat in 2019 to 2028

Variable Coefficient Std. Error t-Statistic Probability  

C 0.014740 0.003448 4.275444 0.0001

MA(1) -0.671608 0.104856 -6.405074 0.0000

R-squared 0.395847     Mean dependent var 0.012109

Adjusted R-squared 0.384659     S.D. dependent var 0.095615

S.E. of regression 0.075004     Akaike info criterion -2.307493

Sum squared resid 0.303781     Schwarz criterion -2.235159

Log likelihood 66.60980     Hannan-Quinn criter. -2.279449

F-statistic 35.38133     Durbin-Watson stat 2.246638

Prob(F-statistic) 0.000000 /

Inverted MA Roots 0.67 /
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As shown in Table 6, the ARIMA (0,1,1) model used

for projecting top yields of world wheat in 2019 to 2028, is

established on the basis of MA(1) basic model because of its

best fitness with ME of -4.68% among five kinds. Noticeably,

the top yields is not as well fitted as the average yields from

2009 to 2018 according to their ME because it fluctuated

more than the average.

ARIMA modelling used for projecting top yields of world

wheat in 2019 to 2028

The regression result of ARIMA (0,1,1) model is

shown in Table 7.

As shown in Table 7, absolute value of inverted MA

root (0.67) are below 1.00, which shows the ARIMA (0,1,1)

model is stationary. Thus, the top yields of world wheat in

2019, 2020, 2021, 2022, 2023, 2024, 2025, 2026, 2027

and 2028, projected using the ARIMA(0,1,1) model, are to

be 9852, 9998, 10146, 10297, 10449, 10604, 10761,

10920, 11082 and 11246 kg ha-1, respectively.

The effects of global warming on the yields of world wheat

It is worldwide acknowledged that annual global

mean temperature has been rising over time since industrial

evolutionary. As above-analyzed, both average and top

yields of world wheat rise over time in general. Theoretically,

there must exist certain inherent relationship between annual

Table 8: Model Summary and Parameters of global warming effect on the average yield from 1961 to 2018

Equation Model Summary Parameter Estimates

R Square F df1 df2 Sig. Constant b1 b2 b3

Linear 0.793 214.986 1 56 0.000 -15802.517 1269.394

Logarithmic 0.793 214.454 1 56 0.000 -45903.582 18142.430

Inverse 0.792 213.275 1 56 0.000 20478.934 -258956.435

Quadratic 0.793 105.583 2 55 0.000 -13410.136 934.611 11.699

Cubic 0.793 105.583 2 55 0.000 -13410.136 934.611 11.699 0.000

Compound 0.724 147.185 1 56 0.000 0.603 1.777

Power 0.726 148.327 1 56 0.000 7.043E-7 8.227

S 0.727 149.126 1 56 0.000 15.946 -117.577

Growth 0.724 147.185 1 56 0.000 -0.506 0.575

Exponential 0.724 147.185 1 56 0.000 0.603 0.575

Logistic 0.724 147.185 1 56 0.000 1.659 0.563

Table 9: Model Summary and Parameters of global warming effect on the top yield from 1961 to 2018

Equation Model Summary Parameter Estimates

R Square F df1 df2 Sig. Constant b1 b2 b3

Linear 0.712 138.233 1 56 0.000 -41322.602 3413.511

Logarithmic 0.714 140.040 1 56 0.000 -122541.947 48890.046

Inverse 0.717 141.550 1 56 0.000 56447.880 -699298.853

Quadratic 0.723 71.791 2 55 0.000 -229529.489 29750.673 -920.353

Cubic 0.723 71.909 2 55 0.000 -168294.561 16742.218 0.000 -21.686

Compound 0.669 113.238 1 56 0.000 6.453 1.634

Power 0.673 115.080 1 56 0.000 5.383E-5 7.036

S 0.676 116.724 1 56 0.000 15.935 -100.719

Growth 0.669 113.238 1 56 0.000 1.865 0.491

Exponential 0.669 113.238 1 56 0.000 6.453 0.491

Logistic 0.669 113.238 1 56 0.000 0.155 0.612
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global mean temperature and the yields of world wheat

because temperature is one of essential factors for wheat

growth and yield. Though all climatic factors such as sunlight,

temperature, precipitation and gases have their respective

influences on the growth and yield of world wheat, but only

the variation (rise) of annual global mean temperature is

observed. Therefore, the contribution of sunlight,

precipitation and gases each year at global level can be

considered as constant (in modelling), to the yield of world

wheat including both spring and winter varieties worldwide.

In empirical analyses: it is causality-tested that there

exist Granger causalities between annual global mean

temperature and average yield (with P of 0.0093 and F-

Statistic of 6.18295) and top yield (with P of 0.0499 and F-

Statistic of 3.30424) of world wheat from 1961 to 2018; and

it is co-integration-tested that there are long-run equilibrium

relationships between annual global mean temperature and

average yield (P = 0.0000 while t-Statistic = 76.09989) and

top yield (P = 0.0434 while t-Statistic = 2.068827) of world

wheat from 1961 to 2018. Thus, taking annual global mean

temperature as independent while world wheat yield as

dependent, the effect of global warming on the yields from

1961 to 2018 is respectively regression-modeled with

constant and shown as in Table 8 and Table 9.

As shown in Table 8, the effect of global warming on

average yield of world wheat from 1961 to 2018 is positive

with coefficient b1 of 18142.430 and linear function best

simulated citing the highest R squared of 0.793 and F of

214.986.

As shown in Table 9, the effect of global warming on

top yield of world wheat from 1961 to 2018 is negative with

cubic function (coefficient b3 = -21.686) showing one of

two highest R squared values (0.723) among 11 kinds and

higher F of 71.909 than the other (71.791).

To see further global warming effects on the yields of

world wheat in 1961 to 2028, ARIMA (1,0,1) model is

established with stationary logarithmic series of annual

global mean temperature (t-statistic value = -6.996297 while

ADF unit root test critical value at 1% level = -4.127338) and

ARMA (1,1) basic model with the lowest ME of -0.08%

between fitted values and actual temperatures from 2009 to

2018 among five kinds. The ARIMA (1,0,1) model is used for

projecting annual global mean temperature resulted with

15.05, 15.08, 15.11, 15.14, 15.16, 15.19, 15.22, 15.25,

15.28 and 15.31°C in 2019, 2020, 2021, 2022, 2023, 2024,

2025, 2026, 2027 and 2028, respectively. Then different

regression models are used for simulating the dependence of

world wheat yields on annual global mean temperature,

which reveals that global warming exerts positive effect on

average yield of world wheat with a quadratic function

(coefficient b2 = 314.531 as R2 = 0.873) while negative

effect on the top yield with cubic function (coefficient of b3

= -11.733 as R2 = 0.798). The result is consistent with the

scenario from 1961 to 2018 in terms of the trend.

The ratio of average to top of world wheat yields and annual

global mean temperature in 1961 to 2028

As previous-discussed, the ‘top yield’ is considered

potential limit of the ‘average yield’ because the latter will

chase after but never meet the former. Just as projected in

this research, average yields of world wheat in 2019, 2020,

2021, 2022, 2023, 2024, 2025, 2026, 2027 and 2028 are

36.23%, 36.41%, 36.59%, 36.76%, 36.94%, 37.1%,

Fig. 2: The ratio (%) of average to top of yield and annual
global mean temperature (°C) in 1961 to 2028

Note: ratio simulated = 100*average yield simulated/
top yield simulated.

Fig. 1: Average and top yields of world wheat in 1961 to

2028
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37.30%, 37.49%, 37.67% and 37.85% of the top ones,

respectively. As shown in Fig.1, top yield of world wheat

fluctuated more than the average in rise from 1961 to 2018,

average yield simulated rises almost in linear trend while the

top simulated does in smooth curve one in 1961 to 2028.

As shown in Fig. 2, actual ratio of average to top of

world wheat yields from 1961 to 2018 rose in fluctuation

ranging from 38.23% (in 2018) to 26.37% (in 1964) while

the ratio simulated in 1961 to 2028 almost rises in linear

trend; annual global mean temperature from 1961 to 2018

fluctuated in slight rise while the temperature simulated in

1961 to 2028 almost rises in linear trend. In the future, the

average yield will increasingly approach the top partly due

to positive effect on the average while negative effect on the

top, of global warming.

From the years, researchers have been working hard

for seeking quality yield of food crop especially staple one

like wheat. Through different techniques like variety

cultivation and genetic engineering techniques, the yield of

wheat can be improved. Genetic engineering is regarded as

the most effective way for improving the yield potential of

wheat. Improving seeds through breeding and advanced

cultivation should be simultaneously used to maximize wheat

yields. However, no matter what seed improving approaches

(for example cloning) or cultivation technology (for example

controllable temperature) are used, there is evidence that

any given crop’s yield is limited due to the solar radiation

limit. Unfortunately, ‘low yield’ and ‘high quality’ is often

‘bundle-sold’, which represents an indissoluble link e.g.

when attempting to maximize wheat production means

accepting an inevitable decrease in its quality. It is undeniable

that under special conditions, wheat top yields can be

maximized, however this will not be sustained for a long

period of time. Thus in a long run, any crop’s yield over time

theoretically shows a trend of logistic curve (i.e. S-shaped

curve), where the crop’s yield is positively accelerated

before the turn-point, while negatively accelerated after

that until the acceleration stopped eventually. For the crop

whose current average yield is in low place before the turn-

point of such S-shaped curve, the opportunities for improving

global production should be mainly dependent on raising

the crop yield potential in high-yield countries with high

efficiency; for those in high place after the turn-point of

such S-shaped curve, the opportunities should be mainly

dependent on low-yield countries through the amelioration

of arable land as top yield rises increasingly difficult over

time; and for those in middle place around the turn-point of

such S-shaped curve, the opportunities should be dependent

on both high-yield and low-yield countries with integrated

efficiency.

CONCLUSION

Global warming exerts positive effect on average

yield of world wheat while negative one on the top yield; as

for world wheat production in 2019 to 2028, the

opportunities for improving production should be mainly

dependent on the advantage of high-yield countries as the

yield is still in low place before the turn-point of S-shaped

curve in long-term trend affected partly by greenhouse gas

effect.
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